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Problems of mathematical modeling of the behavior of mixtures of various materials at 
high pressure are generated in calculating the action of products of high-energy detonation 
explosives on heterogeneous materials, porous media, and so on. 

To describe these effects within the hydrodynamic approximation of mechanics of hetero- 
geneous media, corresponding mathematical models were suggested in [i, 2] within the two- 
pressure approximation. In the case of nonequal phase pressures some closure relation is 
required, such as a condition of pressure proportionality Pl = kp2, k = const (including 
k = i). A method of model closure in pressure, different from that mentioned, was suggested 
in [3]. It is based on postulating equations of m2-transport for the bulk concentration of 
the second phase with a source term. An expression for the source term in the equations of 
m2-transport is derived in [4], and a closure model is given for two solids�9 

According to the mathematical model suggested, the calculation of the structure of the 
shock wave (SW) in a saturated porous medium (water and sand) is carried out in [i] for a 
single-pressure mixture. Problems of solution existence and uniqueness have not been dis- 
cussed in detail. A review is provided in [5] of studies on SW structures in mixtures of two 
solid materials within the two-velocity, single-pressure, barotropic approximation. The 
existence of four SW types is shown in [6] on the basis of qualitative arguments for this 
flow. In [7] were investigated problems of existence and uniqueness of solutions of the 
type of traveling waves for a mixture of Clapeyron gases within the two-velocity, two-tem- 
perature approximation, while similar problems were treated in [8] for a single-velocity, 
two-pressure barotropic flow of a gas-fluid mixture. 

It is interesting to investigate the SW structure in a mixture of two solids within the 
hydrodynamic approximation including the differences in the phase velocities and pressures, 
as well as formation of different types of SWs from initial given step-function shapes and SW 
reflection from a rigid wall. 

i. Stationary Flow. The equations of [9], describing flow of the traveling wave type in 
an attached coordinate system, are 

p~ui = ci, i = t ,  2, p A I CiU i ~- C2b~ 2 = %, 
2 

P i = a i ( p i / m ~ - - p . , o ) ,  i = t ,  2, p = m ~ p i + m 2 p 2 ,  ( 1 . 1 )  

c2u2 ~- m2p2 + (P2 - -  Pl) m2 = - -  B,  

R =  P2CD Re (Pl -- P2) 
T, St 24 ml (ul - -  u.2), m2 = - -  • --  

. ~ 2 u 2  

Here  P i  = m i P i i  i s  t h e  mean d e n s i t y ,  m i ,  P i i  a r e  t h e  b u l k  c o n c e n t r a t i o n  a nd  t r u e  d e n s i t y ,  P i  
is the partial pressure, u i are the velocities of the different phases, zero denotes the 
initial state, c i are the values of the corresponding discharges at the initial point, R is 
the interphase interaction force, c D is the resistance coefficient, Re is the Reyl~olds num- 
ber, and zSt is the Stokes velocity relaxation time. The system (i.i) must satisfy stationary 
boundary conditions at +_~ for the vector solution ~ = ~(Pl, 02, ul, u2, m2): 

(1) -* (I)0, ,~, ~ -~  O, f o r : x  -+ -Voo. ( 1 . 2 )  
t 

The p r o p a g a t i o n  p r o b l e m  o f  a s t a t i o n a r y  SW i n  a m i x t u r e  o f  two s o l i d  m a t e r i a l s  r e d u c e s  t h e n  
t o  s o l v i n g  t h e  b o u n d a r y  v a l u e  p r o b l e m  ( 1 . 1 ) ,  ( 1 . 2 )  i n  t h e  r e g i o n  ( - ~ ,  + ~ ) .  
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Two relaxation processes occur in the mixture: velocity compensation of the components 
with characteristic time scale xSt and variation of the bulk concentration of metal particles, 
generated by the pressure difference of phases with scale Tm2 ~ 2rp22.0af/(pla.0~) (r is the par- 
ticle radius, and for the viscosity of the second medium we adopt the estimate ~ = 2p22aer). 
One can also define a characteristic time of perturbation propagation in the mixture Xg = 
x0/a 2 (x 0 is a characteristic length). 

A mixture flow in which TSt/~g ~ i, ~m2/~$ ~ i will be called total equilibrium or 
equilibrium, ~St/~g ~ i, ~mf/X~ ~ i - equilibrlum-frozen, xSt/Xg ~ i, Tmf/~g ~ i - frozen- 
equilibrium, and xSt/~g ~ i, ~mf/Tg ~ i -- frozen. 

The first type of motion is characteristic of equal phase velocities and pressure, the 
second - equal velocities but different pressures [9], the third - different phase velocities 
and equal pressures, and the fourth - different velocities and pressures. We further deter- 

e mine the total equilibrium sound velocity c~ = dp/dp, where P=PI(Pl, m~(p))-----P~(Pf, m2(@)), Pl 
(I --~)p, P2 =~P, a = Pf0/P0. 

It is easily verified that 
2 

c~ = c~] + (St -~ p~ - -  p~) dm~/d 9. 

Here  dm~/d9 = RalPh; S~ = m~Opf/Om~-- m~OpJOm~; ~ = Pi/P (i = 1, 2); R~ = ~Op~/Op~ - -  ~20p2/092; p~ = OpJOm2 
§ Op~/Oma The f u n c t i o n  m~(p)  i s  found  f rom t h e  c o n d i t i o n  o f  p r e s s u r e  e q u a l i t y .  For  t h e  
second flow type in the mixture one defines the equilibrium-frozen sound velocity Cef: 

c~I = Op/Op ~1=~2 ~ ~2a2, 
PlOP 2 

and f o r  t h e  t h i r d  - t h e  f r o z e n - e q u i l i b r i u m :  

c~ = 3p/Op ] ~  = (m~ OpdOp~OpdOm~ + m~ OpdOp~OpJOm~)/P ~. 
Pl=P2 

We n o t e  t h a t  t h e r e  e x i s t  two f r o z e n  sound v e l o c i t i e s :  a~ and a2 ,  whose maximum a 2 w i l l  
be c a l l e d  t h e  t o t a l l y  f r o z e n  ( o r  f r o z e n )  sound v e l o c i t y .  

I n  t h e  e q u i l i b r i u m  f l o w  o f  t h e  m i x t u r e  [ P z ( P )  = P f ( P ) ]  one can  f i n d  a d e p e n d e n c e  o f  t h e  
b u l k  c o n c e n t r a t i o n  o f  p h a s e s  on t h e  mean d e n s i t y  

[u = crZp, c = l--aP=2.0/Pn,0, ~ =(a~&a)=i] .  I t  i s  shown t h a t  t h e  d i s c r i m i n a n t  o f  t h i s  e q u a t i o n  i s  
p o s i t i v e ,  t h e r e f o r e  b o t h  b r a n c h e s  o f  t h e  s o l u t i o n  a r e  r e a l .  The b r a n c h  ml = m ~ ( p ) ,  c o r r e -  
s p o n d i n g  t o  t h e  minus  s i g n  in  t h e  e x p r e s s i o n  f o r  t h e  r o o t  o f  t h e  q u a d r a t i c  e q u a t i o n ,  ha s  a 
p h y s i c a l  m e a n i n g ,  s i n c e  i t  p a s s e s  t h r o u g h  t h e  i n i t i a l  p o i n t  (ml0 ,  P0) .  

The e q u a t i o n  o f  s t a t e  i s  in  t h i s  c a s e  

p = ~p/m.~ (p) - -  I. 

The s e t  o f  s t a t e s  b e h i n d  t h e  SW f r o n t  can  be f o u n d  i n i t i a l l y  by means o f  t h e  H u g o n i o t  e q u i -  
l i b r i u m  a d i a b a t .  I t  seems t h a t  i n  t h i s  c a s e  t h e r e  e x i s t  two f i n a l  s t a t e s :  u K, UK, d e f z n e d  
as  t h e  s o l u t i o n s  o f  t h e  q u a d r a t i c  e q u a t i o n  

u~ + b u ~ + ~ = O ,  

where  ~ : ((1 + g)c~t - -  ~c)](ClMm); b = --(2 q:- g - -  c)/ca; g =  P0M~0. I n d e e d ,  t h e  d i s c r i m i n a n t  o f  t h e  
g i v e n  e q u a t i o n  can  be r e p r e s e n t e d  as  a q u a d r a t i c  p o l y n o m i a l  i n  y ,  which  i s  p o s i t i v e  f o r  a l l  
p h y s i c a l  i n i t i a l  d a t a .  I n  t h i s  c a s e  we h a v e  f o r  t h e  Mach numbers  o f  t h e  s o l u t i o n s  found  f o r  
t h e  e q u i l i b r i u m  sound v e l o c i t y  c e 

Me,, = udc~,~, c~ = ~, ( c m [ -  ~ , p ) / ( m i ( c ( m ~ )  ~ - -  ~,p)), 

the following estimates M~, K > I, Me, K < i. 

To determine the conditions behind a frozen SW with m~ = mm0 one can use the Hugoniot 
adiabat of the frozen flow, which we rewrite as 

F (u D uf) (ue - -  %) (u2 - -  ~ )  ~t (u,  - -  u0) (u~ - -  ~ )  = 0 ( I. 3 )  
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[ul = i/u0, u2 = a/u0)" It is hence seen that three states correspond to the equiiibri~n 
point (u0, fi2), (ul, u0), (ill, u2), i.e., the conditions behind the frozen SW front are also 
found nonuniquely. 

We finally obtain conditions behind the front of an equilibrium-frozen SW, i.e., when 
uz = u2, ml = m10, Pl ~ P2. In this case the velocity behind the front is ~ = gl{il + ~2u2 = 

cgf/u 0. The solution of the boundary value problem (i.i), (1.2) reduces to solving the sys- 
tem of differential equations 

d% u: B + • 2 = A(u> u2); 
= -- ~ 2 (1.4) dx Pl u i -- al 

- - ' " = S ( u . u ~ )  

~z  P2 u] - -  a ~ 
z 2 

with corresponding boundary conditions. 

It was shown in [9] that for TSt/~g << i, Zm/~g ~ i frozen and disperse SWs can propagate 
in the mixture, and criteria of pressure nonmonotonicity in the second phase were found. We investi- 
gate the flow types in the mixture for ~St/Tg ~ I, ~m2/~g >> I. In this case one can show the solv- 
ability of the boundary value problem for Eq. [1.4), augmented by the integral (1.3). From 
Eq. (1.3) we explicitly express u 2 as a function of u I. The range of definition of the 
function Uz(U l) consists of three subregions. In the first (0 < u I < u~) the function uz(u I) 
is nonunique (when u I § 0 one of the branches tends to zero, and the second - to ~); in the 
second (u~u~u~) it is a closed curve, and in the third (u I > u~) - it is also nonunique 
[here the quantities u~ (i = i, 4) depend on the initial parameters of the mixture]~ For 
u~ < u~ < u~, u~ < uz < u~ the function u~(u~) is undefined. The straight line u 2 = u~ 
intersects the function u2(u I) described at two points: (u0, u0), (UK, uK). To find u K = 
c~f/u 0 one can use the Hugoniot adiabat in equilibrium flow in velocities, nonequilibrium 
flow in pressures with u 0 > Cef. The results of estimating velocity~values at the final 
point for various initial data u0, ~I are given in Table I, in which ~ = (u~ - a)/(l a), 
and 

We investigate the sign of Xl = dA(u z, u2(ul))/du I at the initial and final flow points 
[A(u l, u 2) is defined by (1.4)]. Using the representation 

and putting for simplicity e D = 24/Re, for u z = u 2 = u we obtain 

Let ~0 = (u0, ~l) be the vector of initial data, and let ~ l a ,  ~IK be the X l values at the 
initial and final flow points. We then have 

Statement i. If ~0 ~ I~, then X~o < 0, %~K < 0; if ~0 ~ I~, then X~o < 0, k~K > 0; if 

~II,, III~, IV, then %~0 < 0, %zK < 0; and if ~0~I12, llI=, then ~0 > 0, k~K > 0. 

On the basis of this statement we omit the flow types in the regions mentioned. The 
qualitative flow pattern can be represented by Fig. i. The points O(uo, Uo) , Bz(uo, u2), 
C~(fi~, fi=), A~(~, u o) on the closed curve correspond to conditions in frozen compression 
and dilatation waves. The straight line u 2 = u~ passes through the points 0(uo, uo) , 
K(u K, UK). Transforming from the point 0 to the points A~, C I, B~ with a discontinuity, the 
flow further relaxes to the points D~, D2, in which the velocity of the second phase reaches 
the sound velocity. Following this we have flow locking. Here, following [i0], one can 
introduce L - the maximum sample length of a heterogeneous medium in which the mixture flow 
takes place. For a sample length ~ < L subsonic flow is realized at the final point, for 

= L we have sonic flow in the second phase, and for ~ > L the flow is nonreal. Using the 
Lax stability conditions, it can be shown that the flows C~ + D~, B~ § D 2 are unstable (dila- 
tation SWs in both phases and in the second phase, respectively). For Az § D~ the SW is 
stable in the first phase and is terminated at a final distance L from the wave front. At 
this point we have peaking of the quantity du2/dx. Following S. A. Khristianovich, this flow 
can be interpreted as a fractal wave. 
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TABLE i 

h 
l<~o<Cef Cef < Uo < ~ Ira < uo < a  uo > a  

~ > ~** No solutions II1 I I I  1 
u~ < t u~ < t 

Ce] > uu > I 

ee1< uE< -[/~- No solutions 

)> 

O < ~ l < ~ ,  % < 1 / J  

III2 

i < u r < C e l  

IV 

uK< i 
, ' ~ ,  (Uo. u2) 

A/~r.@) ~ O ( u a ,  uo) 

L~'2 ~ " U/= U 2 

Fig. 1 

The flow in region I2 is treated similarly. Here the final point was shifted above the 
line u 2 = /a. The flow is stable, starting at the point A(fil, u0) and terminating at the 
point D1(u~, /~) in the regime with peaking of du2/dx. 

During flow in the region III the function uz(x ) acquires at x § ~ the values u0, u K 
with a turning point at u I = i. In this case u 2 varies continuously and uniquely from u 0 
to u k. To eliminate the nonuniqueness in the velocity of the first component at the point 
in which the equality u 2 = u K is reached, a discontinuity is introduced in the first phase. 
The phase velocities are equated behind it: u I = u 2 = u K. We note that equilibrium is achieved 
at a finite distance by means of a tail discontinuity. 

The solution is region II 2 with 10 > 0, 1 K < 0, being continuous, asymptotically acquir- 
ing initial and final values at ~, is a disperse SW. Let u 0 = ~Cef + (i - ~)~a, ~ e (0, i), 

where  ce l=  ( g +  F ~ 2 + 4 ( 1 -  g ) V ~ ) / 2 ,  $~ = (cef - - a ) / ( [  - - a ) ,  M1 = $1P2~/(~2 + ~P22) , in  which  e a s e  u K = 
1. An unstable point of intermediate equilibrium u I = u 2 = u K = 1 [dul/dx(uK) ~ 0, duz/ 

dx(u K) ~ ~, du2/dx(u K) = 0] is reached in this case in the solution. The velocity of the 
second phase increases to ~during transition through this point, and the velocity of the 
first phase decreases to u~. The given regime has transition points through both phase sound 
velocities with peaking of dul/dx in the final interval. It is the boundary between a dis- 
perse SW with a tail discontinuity and a totally disperse SW. 

It is similarly shown that in regions IIIm, IV there exists a flow with a two-wave con- 
figuration. At the tip of the SW there is a jump in the second phase (u0, u0) ~ (u0, u2), 
and then a velocity relaxation zone occurs until u I is comparable with u K. At the same 
point there occurs~a SW transition to a final point in the first phase. The flow in region 
III 2 is a frozen SW in the first phase in the tip portion, augmented by a velocity relaxation 
zone in both phases. The regimes IIIl, IIl z are separated by a flow with m I = m10 , for 
which the solution is a frozen SW in the first phase, augmented by a region of continuous 
flow, in which a transition is realized through both sound velocities. This flow exists in 
a regime with peaking du~/dx at the final length of the medium L. 

On the basis of this discussion we formulate 

Statement 2. A solution of problems (1.1), (1.2) exists in the class of: l) frozen SWs, 
augmented by a relaxation zone with peaking of du2/dx in the final flow region with (u0, ~i) 
I m, I2; 2) disperse SWs with a tail discontinuity in the first phase at (u0, ~) ~ IIl, and 
totally disperse SWs at(u0, ~i) ~ I12; and 3) frozen SWs in the second phase (the tip of the 
discontinuity), the boundaries through a relaxation zone with a tail discontinuity in the 
first phase, with (u0, ~I) ~ II11, |V , and totally frozen SWs at (u0, ~I) ~ llI2- 

For gz = g** the flow in regions II l, II 2 exists in the form of a disperse wave with two sonic 
points and peaking of du2/dx on a semibounded interval. If ~z = ~** in the region III1, the 
relaxation flow has the form of a frozen SW with two sonic points on a semibounded interval 
with peaking of du2/dx. A full discussion of the proof of existence of the flow regimes of 
the mixture is given in [15]. 

2. Nonstati0nary Flow. The equations describing flow of a mixture in the nonstationary 
one-dimensional case are 
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8 x  4 

Fig. 4 

8p~/Ot + 8piui/Sx = 0, i = 1, 2, 

pl(Oul/Ot + ulOul/Ox) + mlOpJOx = --pl(ut  --  u2)czRe/24/~r = R ,  (2. ! )  

p2(OuJOt + u2Ou2/Ox) + m20pJOx = - - R  + (p~ - -  pl)Oml/Ox, 

Om2/Ot + u20m2/Ox = - -  (Pt - -  P2)/P2, Pi  = a~ ( p ~ / m i - -  Pi~,o), ~ = i ,  2. 

As initial data we take the parameter distribution in the form of one of three possible 
types of stationary SWs. The problem is solved by the coarse particle method, investigating 
the following problems for this case. 

Problem i. Propagation of Disperse and Frozen SWs in Space. Let u10 = u20 = 0, D = 
-3.2, m I = 0.5 (the various quantities are rendered dimensionless according to [9]). In this 
case the flow is a totally disperse SW at t = 0. Since the flow is subject to constant 
equilibrium parameter values at the right boundary of the region (for the velocities these 
are u i = UK, i = i, 2), a stationary disperse SW propagates to the left. The formation pro- 
cess of a disperse SW was investigated from initial data of a step type. In this case the 
flow parameters to the left and to the right of the discontinuity point satisfied the equi- 
librium Hugoniot adiabatic curve. As seen from the density profiles of the second phase shown in 
Fig. 2, the discontinuity occurring at the moment of time t = 0 (curve 4) is smoothed at 
t = 0.5 (curve 3), and a disperse SW propagates at t = i, 1.5 (curves 2, I, respectively). 

Flow versions with ul0 = 0, u20 = 0, D = -3.5, m I = 0.75 have been treated similarly. 
A frozen SW with single-wave structure is realized at t = 0, with the flow being continuous 
in the first phase with a discontinuity in the second. The leading discontinuity is some- 
what blurred due to the effect of the viscosity approximation, and the wave propagates stably 
with a velocity near D = -3.5. 

Let u10 = 0, u20 = 0, D = --6.5813, m I = 0.75. The parameters of the first phase are con- 
tinuous at the tip of the wave have a tail discontinuity at t = 0, while in the second phase 
the SW is located at the tip of the flow. In the given case one observes stable stationary 
propagation of the wave configuration investigated. We note that the flow in the second 
phase with the leading discontinuity is formed more quickly than in the first. 

The behavior of a mixture in which flow of the type of SW dilatation is realized at the 
initial moment of time is of interest. The presence of an unstable discontinuity :in the sec- 
ond phase, augmented by a velocity relaxation zone to the final equilibrium state, is char- 
acteristic of it. The flow in the first phase is continuous. This flow type is realized for 
ul0 = 0, u20 = 0, D = -1.5. Since the relative sound velocity in the final equilibrium state 
u K - D is higher than the sound velocity in the second phase, the relaxation zone is con- 
tinuously adjacent to the final state. The flow pattern generated for the pressure in the 
first phase is given in Fig. 3. The unstable flow configuration at t = 0 (curve 4) decom- 
poses into two dilatation waves (DW), propagating to the right and to the left (curves 1-3 
correspond to t = 1.2, 0.8, 0.4). The DW propagating to the right reduces the pressure in 
the components, and a constant flow zone of the mixture is formed behind it. The given con- 
figuration results from the fact that the pressure discontinuity is concentrated at the point 
x = 5. A discharge starts with the decomposition, which reduces the pressure P0 = 0 and leads 
to motion of the medium to the right of the discontinuity. Its velocity, however, is high, 
and the points of the mixture shown in the motion (located left of the point x = 5) are not 
subject to the pressure of the right half, since the velocity of particle "escape" is quite 
high in the given case. In the given case the situation is similar to the problem of con- 
figuration B described in [Ii] of discontinuity decay, if in the latter one carries out the 
variable replacement u = -u10 + u, x = x - uzt (u I < 0 is the gas velocity left of the dis- 
continuity). Calculations carried out over a long time with removed boundaries of the com- 
putational region have shown that equilibrium in the flow velocities (u z = u 2 = 2~ is 
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formed in the mixture as t § ~, while the pressure components are nonequal and are close to 
the pressure values at the profile intersection point at different moments of time. 

Problem 2. SW Reflection from a Wall in the Mixture. This problem has attracted the 
attention of researchers (a bibliography can be found in [12, 13]). We note the study [14], 
where the conditions determining the type of reflection are written down for incident frozen 
and disperse waves in a mixture of gas and solid particles. A verification of these condi- 
tions is provided on the basis of calculations within a mixture model without inclusion of 
bulk particles (the Kligel-Nickerson model). The calculations have verified the three for- 
mulated types of SW reflection. 

We dwell now on the problem of SW reflection from a rigid wall in the case of two com- 
pressible gases. We assume that a compression SW with constant amplitude propagates from 
right to left in the resting mixture. The flow ahead of the SW at t = 0 is in equilibrium 

with the parameters Pi = P0 = 0, u i = 0, Pi = Pi0, i = i, 2. The flow parameters behind 
the incident SW are marked by the subscript K, and the subscript R refers to the reflected SW 
(DK, D R are the velocities of incident and reflected SWs). Behind the front of the incident 
SW the parameters of the mixture acquire equilibrium in the velocity values u i = UK, Pi = 
PiK, i = i, 2. The conservation laws are in this case 

- -  PoOK = p~ (u~ - -  O~), poO~ = p~ + p~ (u~ - -  O~) ~, - -  p R D R  = 

i 2 
= P~ (u~ - -  DR), PR ~ pBDR = p .  - -  pRDR (u~ - -  DR), 

w h e r e  P~ = mlplK ~ m2P2,;  P0 = Plo + P20; PR = Pl~ + P~R; PK = ce](P~--P0); P~ = ce] (PR--P0). 

F o l l o w i n g  s i m p l e  t r a n s f o r m a t i o n s  f o r  t h e  d e t e r m i n a t i o n  o f  DR, we o b t a i n  t h e  e q u a t i o n  
D~ - DRu K - c ~ f  = 0 ,  h a v i n g  s o l u t i o n s  D2+ = D = - u  0, D 2_ = - c ~ f / D .  The  f i r s t  o f  t h e m  d e t e r -  
m i n e s  t h e  v e l o c i t y  o f  t h e  i n c i d e n t  SW, and  t h e  s e c o n d  - t h e  r e f l e c t e d  o n e .  We w r i t e  down 
e q u a t i o n s  f o r  t h e  r e l a t i v e  v e l o c i t i e s  o f  t h e  m i x t u r e  a h e a d  o f  and b e h i n d  t h e  f r o n t  o f  t h e  
reflected SW, respectively: u~ = u K - D 2_ = D, v~ = -D 2_ = c~f/D. On the basis of these ex- 
pressions and the statements proved above for the incident disperse SW it is shown that the 
incident disperse SW is reflected by a wave of the same type, i.e., for (u0, ~i) ~ 111 - a dis- 
perse SW with a tail discontinuity in the first phase, and (u0, ~i)~I12- a totally disperse 
SW. For(u0, ~i)~II11 the incident SW is reflected by a wave of similar type, and the incident 
frozen wave of single-wave structure is reflected by a frozen wave of the same structure. If 
(u0, $i)~III=, the incident and reflected waves have a two-wave structure. 

We describe several numerical experiments, carried out for this problem. As initial 
conditions we select a flow of the type of a completely disperse SW, corresponding to ui0 = 
0, D K = 3.2, m10 = 0.5, i = i, 2. At t = 0 the tip of the SW is concentrated at x = 4 (by 
the tip of the SW we imply the point in space at which the flow parameters at e = 0.01 differ 
from the values at the front of the disperse SW). Figure 4 shows pressure profiles in the 
second phase at t = 0, 0.2, 0.24, 0.28, 0.32 (curves 1-5). As is seen, the reflected SW is 
also disperse. In this case one must notice the good transfer of parameters behind the front 
of the reflected SW: the analytic solution gives P2,R/P2,0 = (D/Cef) 4 = 1.545, and the numer- 
ical solution gives 1.540. 

The behavior of the phase velocities is interesting. Thus, for propagation of a SW from 
the left toward the rigid wall the profile of phase velocities is a curve with sharp varia- 
tion in the leading portion of the wave and is smoother in the rear. Figure 5a shows the 
behavior of u 2 at t = 0, 0.4, 0.8, 1.2, 1.6 (curves 1-5), and Fig. 5b - at t = 0, 2, 2.4, 
2.8, 3.2 (curves 1-5). The wave velocity is in this case D R = 3.2. The wave trayerses 
the distance s = 4 after At = 1.25 (curve 1 of Fig. 5a). It is seen that the pattern of ve- 

locity changewith wave thickness is .totally reversible. In the leading part the ve- 
locity variation is primarily sharp, and in the trailing part it is smoother; the velocity 
of the reflected disperse SW (obtained analytically) D R = -c~f/D = 2.57 is close to the 

calculated DR = 2.58. 

We note that the pressure and density of the first phase near the wall slightly exceed 
the values determinedanalytically. This is, obviously, related to the fact that here one 
deals with interactions between the incident and reflected waves. Therefore the ~ixture does 
not reach a homogeneous state at the final time. 

We further consider reflection of a frozen SW from the wall (m I = 0.75, D = 3.5, ui0 = 
0, i = i, 2)~in the case of single-wave configuration (the SW tip in the second phase, with 
continuous flow in the first). The calculation results for the pressure of the first phase 
are shown in Fig. 6 (curves i-5 correspond to t = 3.2, 3.6, 4.0, 4.4, 4.8). In this case 
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pressures are generated during impact of the first phase with the solid wall at the first 
moments of time following impact, which are substantially higher than in the state behind the 
reflected wave. The pressure at the wall decreases to the extent of wave removal from the 
wall. However, calculations carried out to a distance of six calibers (a caliber is the 
ratio of the linear size to the width of the frozen SW) have shown that p2(0, t) has not yet 
reached a steady state. The pressure in the second phase, where a discontinuity exists in 
the tip of the wave, increases at the wall up to its value behind the front. In this case 
the pz(0, t) value is established substantially more quickly than in the second phase. At a 
distance of 1.5 calibers already the pressure in the first phase is near the limiting value. 
Naturally, the phase densities behave similarly. As in the preceding case, the solution was 
reflected symmetrically. 

Consider the reflection of a frozen SW with a two-wave configuration (uz0 = u20 = 0, 
Pl0 = P20 = 0, m I = 0.75, D K = 6.5813), when the flow is continuous in the first phase at the 
tip of the wall, while a discontinuity occurs at the tail and relaxation with the subsequent 
zone takes place in the second phase at the tip of the discontinuity. The calculation results 
for the velocity of the first phase are shown in Fig. 7 (the initial data are line 5, and 
the solutions at t = 2.4, 2.7, 3, 3.3 - lines 1-4). It is seen that following reflection from 
the wall the frozen SW remains a wave of the same type, moving with velocity D R = -0.83. The 
tail discontinuity in this phase is reproduced in the numerical calculations in a worse man- 
ner than at the tip: nonphysical oscillations of small amplitude are generated behind its 
front. The leading discontinuity in the second phase is reproduced quite satisfactorily. At 
a distance approximately equal to 5 calibers from the wall the reflected wave already propa- 
gates in the stationary regime~ There is a clear distinction between the tip of the discon- 
tinuity and the subsequent zone of stationary values. 

Thus, in this study we formulated and proved statements concerning types of stationary 
waves in two-velocity two-pressure mixtures of solids (the hydrodynamic approximation). The 
stability of propagation of compression waves in the mixture was shown numerically. A similar 
B configuration of gas-dynamic decomposition decay of the discontinuity [ii] is found in in- 
vestigating the evolution of instability of a dilatation SW in the mixture. It has been shown 
analytically and numerically that during SW incidence at the wall its type is conserved. 
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NUMERICAL INVESTIGATION OF FLAME PROPAGATION AND EXTINCTION IN 

A VERTICAL CHANNEL 

G. M. Makhviladze and V. I. Melikhov UDC 536.46 

One of the most important problems in the theory of combustion limits is the role of 
natural convection in the extinction process. It is well known that the direction of flame 
propagation strongly influences the combustion concentration limits: they are narrower in 
downward propagation than when the flame travels upward. 

A hypothesis explaining the mechanism of extinction of a flame as it propagates down 
through a vessel from the upper wall has been advanced in [i]. The authors suggested that, 
because of the cooling of hot reaction products by the vessel walls behind the flame front, 
free-convection flows develop, causing additional heat loss from the combustion zone and 
extinguishing the flame. Subsequent studies have confirmed the correctness of the hypothesis 
and led to the creation of approximate theoretical models of this phenomenon [2-6]. 

The formation of convective vortices behind a combustion front and their influence on 
flame propagation and shape in ignition from above have been studied in [7, 8]. An experi- 
mental study of the influence of gravity on flame propagation in a tube led Strehlov et al. 
[9] to conclude that extinction in weightlessness and in downward motion of the front is 
explained by heat transfer to the walls. 

A considerable number of papers have been devoted to determining the critical conditions 
of combustion in ignition from below. Experiments [i0] have shown that in a tube, the limit- 
ing flame propagation velocity opposite to the gravitational vector is determined by the as- 
cent velocity of hot reaction products, which depends on the tube diameter and the free-fall 
acceleration; extinction was assumed to occur if the combustion velocity is less than the 
upwelling velocity of burned gas. In [II], on the basis of a similar extinction hypothesis, 
the fundamental limiting flame velocity was calculated in the case of ascent of the burning 
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